

 Navigation

 	
 index

 	
 modules |

 	Interval binning 1.0.0 documentation

A Python implementation of the interval binning scheme

These are some utility functions for working with the interval binning scheme
as used in the UCSC Genome Browser [http://genome.cshlp.org/content/12/6/996.full]. This scheme can be used to
implement fast overlap-based querying of intervals, essentially mimicking an
R-tree [https://en.wikipedia.org/wiki/R-tree] index.

Note

Some database systems natively support spatial index methods such as
R-trees. See for example the PostGIS [http://postgis.net/]
extension for PostgreSQL.

Although in principle the method can be used for binning any kind of
intervals, be aware that the largest position supported by this implementation
is \(2^{29}\) (which covers the longest human chromosome).

Usage

Let’s say you have a set of intervals I in a database system without support
for spatial indexing. Querying I on overlap with an interval q can be done
as:

\[\{ i \in I ~|~ \mathrm{overlapping}(i, q) \}\]\[\text{where}\]\[\begin{split}\mathrm{overlapping}(i, q) = i.start < q.stop \wedge i.stop > q.start\end{split}\]

But this will be slow, even with normal B-tree indexes on start and stop.

If for each interval i, we also store its bin as given by
assign_bin() (and we index it), we can get the same result much
faster by pre-filtering on overlapping_bins():

\[\{ i \in I ~|~ i.bin \in \mathrm{overlapping_bins}(q) \wedge \mathrm{overlapping}(i, q) \}\]

Similarly, if i must completely contain q (or vice versa), you can use
containing_bins() (or contained_bins()).

SQLAlchemy example

As a more concrete example, let’s consider the following SQLAlchemy [http://www.sqlalchemy.org/] model definition for storing gene locations:

class Gene(Base):
 name = Column(String, primary_key=True)
 start = Column(Integer)
 stop = Column(Integer)
 bin = column(Integer, index=True)

 def __init__(self, name, start, stop):
 self.name = name
 self.start = start
 self.stop = stop
 self.bin = binning.assign_bin(start, stop)

The bin column is populated using assign_bin() and has an
index. We can ask for all genes spanning the 50,000-50,500 interval:

>>> session.query(Gene).filter(Gene.start < 50000,
... Gene.stop > 50500).count()
78

But that query will be slow, yielding a sequential table scan. Adding indexes
on Gene.start or Gene.stop will not help much.

The containing_bins() function gives us all the bins potentially
containing genes spanning some interval. We can use that to filter on
Gene.bin first:

>>> bins = binning.containing_bins(50000, 50500)
>>> session.query(Gene).filter(Gene.bin.in_(bins),
... Gene.start < 50000,
... Gene.stop > 50500).count()
78

This query will be much faster because it can use the index on Gene.bin. The
filter on bin only gives us a crude pre-selection though, so we still have to
apply the Gene.start and Gene.stop filters on the (relatively small)
resulting set of genes to get the exact answer.

Installation

To install the latest release via PyPI using pip:

pip install interval-binning

The latest development version can be found on GitHub [https://github.com/martijnvermaat/interval-binning].

API documentation

All positions and ranges in this module are zero-based and open-ended,
following standard Python indexing and slicing.

	
binning.assign_bin(start, stop)[source]

	Given an interval start:stop, return the smallest bin in which it fits.

	Parameters:	start, stop (int) – Interval positions (zero-based, open-ended).

	Returns:	Smallest bin containing start:stop.

	Return type:	int

	Raises OutOfRangeError:

		If start:stop exceeds the range of the binning
scheme.

	
binning.overlapping_bins(start, stop=None)[source]

	Given an interval start:stop, return bins for intervals overlapping
start:stop by at least one position. The order is according to the bin
level (starting with the smallest bins), and within a level according to
the bin number (ascending).

	Parameters:	start, stop (int) – Interval positions (zero-based, open-ended). If
stop is not provided, the interval is assumed to be of length 1
(equivalent to stop = start + 1).

	Returns:	All bins for intervals overlapping start:stop, ordered first
according to bin level (ascending) and then according to bin number
(ascending).

	Return type:	list(int)

	Raises OutOfRangeError:

		If start:stop exceeds the range of the binning
scheme.

	
binning.containing_bins(start, stop=None)[source]

	Given an interval start:stop, return bins for intervals completely
containing start:stop. The order is according to the bin level
(starting with the smallest bins), and within a level according to the bin
number (ascending).

	Parameters:	start, stop (int) – Interval positions (zero-based, open-ended). If
stop is not provided, the interval is assumed to be of length 1
(equivalent to stop = start + 1).

	Returns:	All bins for intervals containing start:stop, ordered first
according to bin level (ascending) and then according to bin number
(ascending).

	Return type:	list(int)

	Raises OutOfRangeError:

		If start:stop exceeds the range of the binning
scheme.

	
binning.contained_bins(start, stop=None)[source]

	Given an interval start:stop, return bins for intervals completely
contained by start:stop. The order is according to the bin level
(starting with the smallest bins), and within a level according to the bin
number (ascending).

	Parameters:	start, stop (int) – Interval positions (zero-based, open-ended). If
stop is not provided, the interval is assumed to be of length 1
(equivalent to stop = start + 1).

	Returns:	All bins for intervals contained by start:stop, ordered first
according to bin level (ascending) and then according to bin number
(ascending).

	Return type:	list(int)

	Raises OutOfRangeError:

		If start:stop exceeds the range of the binning
scheme.

	
binning.covered_interval(bin)[source]

	Given a bin number bin, return the interval covered by this bin.

	Parameters:	bin (int) – Bin number.

	Returns:	Tuple of start, stop being the zero-based, open-ended interval
covered by bin.

	Return type:	tuple(int)

	Raises OutOfRangeError:

		If bin number bin exceeds the maximum bin
number.

Copyright

This library is licensed under the MIT License, meaning you can do whatever
you want with it as long as all copies include these license terms. The full
license text can be found in the LICENSE.rst file.

See the AUTHORS.txt for for a complete list of copyright holders.

 Copyright 2015, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Interval binning 1.0.0 documentation

 Python Module Index

 b

 			

 		
 b	

 	
 	
 binning	

 Copyright 2015, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Interval binning 1.0.0 documentation

Index

 A
 | B
 | C
 | O

A

 	

 	assign_bin() (in module binning)

B

 	

 	binning (module)

C

 	

 	contained_bins() (in module binning)

 	containing_bins() (in module binning)

 	

 	covered_interval() (in module binning)

O

 	

 	overlapping_bins() (in module binning)

 Copyright 2015, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Interval binning 1.0.0 documentation »

 All modules for which code is available

		binning

 © Copyright 2015, Martijn Vermaat.
 Created using Sphinx 1.3.1.

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Interval binning 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Martijn Vermaat.
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_modules/binning.html

 Navigation

 		
 index

 		
 modules |

 		Interval binning 1.0.0 documentation »

 		Module code »

 Source code for binning

"""
A Python implementation of the interval binning scheme.

These are some utility functions for working with the interval binning scheme
as used in the `UCSC Genome Browser
<http://genome.cshlp.org/content/12/6/996.full>`_. This scheme can be used to
implement fast overlap-based querying of intervals, essentially mimicking an
`R-tree <https://en.wikipedia.org/wiki/R-tree>`_ index.

Note that some database systems natively support spatial index methods such as
R-trees. See for example the `PostGIS <http://postgis.net/>`_ extension for
PostgreSQL.

Although in principle the method can be used for binning any kind of
intervals, be aware that the largest position supported by this implementation
is 2^29 (which covers the longest human chromosome).

All positions and ranges in this module are zero-based and open-ended,
following standard Python indexing and slicing.

.. moduleauthor:: Martijn Vermaat <martijn@vermaat.name>

.. Licensed under the MIT license, see the LICENSE.rst file.
"""

TODO: Implement the extended binning scheme (for positions > 2^29).
TODO: Be more flexible in the binning scheme to use.

from __future__ import unicode_literals

from itertools import dropwhile

__version_info__ = ('1', '0', '1', 'dev')
__date__ = '28 Oct 2015'

__version__ = '.'.join(__version_info__)
__author__ = 'Martijn Vermaat'
__contact__ = 'martijn@vermaat.name'
__homepage__ = 'https://github.com/martijnvermaat/binning'

Standard scheme used by the UCSC Genome Browser.
BIN_OFFSETS = [512 + 64 + 8 + 1, 64 + 8 + 1, 8 + 1, 1, 0]
SHIFT_FIRST = 17
SHIFT_NEXT = 3
MAX_POSITION = pow(2, 29) - 1
MAX_BIN = BIN_OFFSETS[0] + (MAX_POSITION >> SHIFT_FIRST)

class OutOfRangeError(Exception):
 """
 Exception that is raised on seeing an invalid bin number or a position or
 interval exceeding the range of the binning scheme.
 """
 pass

def range_per_level(start, stop):
 """
 Given an interval `start:stop`, make an iterator that returns for each
 level the first and last bin overlapping the interval, starting with the
 smallest bins.

 Zero-length intervals are binned according to the one-position interval
 following it.

 Algorithm by `Jim Kent
 <http://genomewiki.ucsc.edu/index.php/Bin_indexing_system>`_.

 :arg int start, stop: Interval positions (zero-based, open-ended).

 :return: Iterator yielding tuples `first, last` being the first and last
 bin overlapping with `start:stop`. The tuples are ordered according to
 the bin size of the levels, starting with the smallest bins.
 :rtype: iterator(tuple(int, int))

 :raise OutOfRangeError: If `start:stop` exceeds the range of the binning
 scheme.
 """
 if start < 0 or stop > MAX_POSITION + 1:
 raise OutOfRangeError(
 'Interval %d:%d is out of range (maximum position is %d)'
 % (start, stop, MAX_POSITION))

 # Note that we treat the zero-length interval `x:x` as `x:x+1`.
 start_bin = start
 stop_bin = max(start, stop - 1)

 start_bin >>= SHIFT_FIRST
 stop_bin >>= SHIFT_FIRST

 for offset in BIN_OFFSETS:
 yield offset + start_bin, offset + stop_bin
 start_bin >>= SHIFT_NEXT
 stop_bin >>= SHIFT_NEXT

[docs]def assign_bin(start, stop):
 """
 Given an interval `start:stop`, return the smallest bin in which it fits.

 :arg int start, stop: Interval positions (zero-based, open-ended).

 :return: Smallest bin containing `start:stop`.
 :rtype: int

 :raise OutOfRangeError: If `start:stop` exceeds the range of the binning
 scheme.
 """
 try:
 return next(dropwhile(lambda r: r[0] != r[1],
 range_per_level(start, stop)))[0]
 except StopIteration:
 raise Exception('An unexpected error occured in assigning a bin')

[docs]def overlapping_bins(start, stop=None):
 """
 Given an interval `start:stop`, return bins for intervals *overlapping*
 `start:stop` by at least one position. The order is according to the bin
 level (starting with the smallest bins), and within a level according to
 the bin number (ascending).

 :arg int start, stop: Interval positions (zero-based, open-ended). If
 `stop` is not provided, the interval is assumed to be of length 1
 (equivalent to `stop = start + 1`).

 :return: All bins for intervals overlapping `start:stop`, ordered first
 according to bin level (ascending) and then according to bin number
 (ascending).
 :rtype: list(int)

 :raise OutOfRangeError: If `start:stop` exceeds the range of the binning
 scheme.
 """
 if stop is None:
 stop = start + 1

 return [bin
 for first, last in range_per_level(start, stop)
 for bin in range(first, last + 1)]

[docs]def containing_bins(start, stop=None):
 """
 Given an interval `start:stop`, return bins for intervals completely
 containing `start:stop`. The order is according to the bin level
 (starting with the smallest bins), and within a level according to the bin
 number (ascending).

 :arg int start, stop: Interval positions (zero-based, open-ended). If
 `stop` is not provided, the interval is assumed to be of length 1
 (equivalent to `stop = start + 1`).

 :return: All bins for intervals containing `start:stop`, ordered first
 according to bin level (ascending) and then according to bin number
 (ascending).
 :rtype: list(int)

 :raise OutOfRangeError: If `start:stop` exceeds the range of the binning
 scheme.
 """
 if stop is None:
 stop = start + 1

 max_bin = assign_bin(start, stop)
 return [bin for bin in overlapping_bins(start, stop) if bin <= max_bin]

[docs]def contained_bins(start, stop=None):
 """
 Given an interval `start:stop`, return bins for intervals completely
 contained by `start:stop`. The order is according to the bin level
 (starting with the smallest bins), and within a level according to the bin
 number (ascending).

 :arg int start, stop: Interval positions (zero-based, open-ended). If
 `stop` is not provided, the interval is assumed to be of length 1
 (equivalent to `stop = start + 1`).

 :return: All bins for intervals contained by `start:stop`, ordered first
 according to bin level (ascending) and then according to bin number
 (ascending).
 :rtype: list(int)

 :raise OutOfRangeError: If `start:stop` exceeds the range of the binning
 scheme.
 """
 if stop is None:
 stop = start + 1

 min_bin = assign_bin(start, stop)
 return [bin for bin in overlapping_bins(start, stop) if bin >= min_bin]

[docs]def covered_interval(bin):
 """
 Given a bin number `bin`, return the interval covered by this bin.

 :arg int bin: Bin number.

 :return: Tuple of `start, stop` being the zero-based, open-ended interval
 covered by `bin`.
 :rtype: tuple(int)

 :raise OutOfRangeError: If bin number `bin` exceeds the maximum bin
 number.
 """
 if bin < 0 or bin > MAX_BIN:
 raise OutOfRangeError(
 'Invalid bin number %d (maximum bin number is %d)'
 % (bin, MAX_BIN))

 shift = SHIFT_FIRST
 for offset in BIN_OFFSETS:
 if offset <= bin:
 return bin - offset << shift, bin + 1 - offset << shift
 shift += SHIFT_NEXT

 © Copyright 2015, Martijn Vermaat.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down-pressed.png

